# Zero sum game

In game theory and economic theory, a **zero-sum game** is a mathematical representation of a situation in which each participant’s gain or loss of utility is exactly balanced by the losses or gains of the utility of the other participants. If the total gains of the participants are added up and the total losses are subtracted, they will sum to zero. Thus, cutting a cake, where taking a larger piece reduces the amount of cake available for others as much as it increases the amount available for that taker, is a zero-sum game if all participants value each unit of cake equally.

In contrast, **non-zero-sum** describes a situation in which the interacting parties’ aggregate gains and losses can be less than or more than zero. A zero-sum game is also called a *strictly competitive* game while non-zero-sum games can be either competitive or non-competitive. Zero-sum games are most often solved with the minimax theorem which is closely related to linear programming duality,[1] or with Nash equilibrium.

Many people have a cognitive bias towards seeing situations as zero-sum, known as zero-sum bias.